Goodbye Manhattan, Welcome Back to Ithaca
We’ve been focusing on Manhattan for the past few months, with the aim to finish Season 4 and any remaining images of areas surrounding Manhattan in Season 1. We’ve made a big push in the last few months to finish Manhattan, and thanks to your help, we’ve completed all publicly released seasons of Manhattan.
With four seasons of Manhattan to add to the four seasons of Inca City that you’ve helped classify, we now have a rich dataset to start looking at how geyser formation evolves over time and how the process of fans and blotch changes from Mars year to Mars year.
Planet Four is leaving Manhattan for now, but we’ll be back for Season 5 some time in the future. We’re going back to focus on another target of interest, Ithaca. We started classifying Ithaca Season 1 images last year, and they’re now back on the site for your to map fans and blotches. You can learn more about Ithaca here. The most telling difference between Ithaca and other areas on Mars’ south pole is the giant fans.
Dive into Ithaca today at http://www.planetfour.org
Mark your calendars – 2 months until ZooCon 2015
Today officially marks two months until ZooCon 2015 hosted at the University of Oxford by the UK Zooniverse team. It’s a day dedicated to volunteers and inspired by Zooniverse projects.
There will be some science team members (physically and virtually) from many of the Zooniverse projects talking about the recent progress and science results coming from your clicks. Some of the core Zooniverse team will be in attendance to give you updates on the latest news in the Zooniverse and where it is heading in the future.
After the afternoon discussions, attendees can later head over to a gathering at a local pub for a social evening. If talks aren’t your thing you can skip them and sign up just for the attending the pub event starting at 5pm, where you can meet other Zooniverse volunteers and get to know some of the dedicated people who build and run the Zooniverse.
To give you an idea of what ZooCon is like check out this guest post by our Talk moderator Andy Martin (wassock), who attended ZooCon13. Also you can find the video of the ZooCon13 and ZooCon 14 Planet Four talks here and here. We don’t know if Planet four will be one of the projects featured (since there’s 30 projects to choose from!), but either way there will be lots of citizen science and Zooniverse happenings to talk about on July 11th.
ZooCon is set for Saturday, July 11, 2015 from 13:00 to 21:00 (BST).There isn’t a published schedule of talks yet, but whether you’re interested in out of this world Zooniverse projects or ones closer to home, they’d love to have you join them in Oxford, UK. Tickets are free, but there is limited seating, so register if you want to attend. Reserve your spot today here.
Planet Four Season 2 and Season 3 Site Statistics
Are you ever curious to know how people classify on Planet Four? Well today is your day. I’m working on generating the final numbers for the first half of the Planet Four science paper in preparation. The paper is an introduction to the project and will contain the catalog of blotches and fans identified thanks to your help in Season 2 and Season 3. We’re getting closer to having the paper and the final catalog preparation in shape for submission by the end of the summer.
As part of the paper, I wrote the section that talks about the classification rate and how people classify on the site. So I made a few close-to-final plots and calculated some relevant numbers from the classification database for Season 2 and 3 that will be included in the paper so I thought I’d share them here. These values and figures below are pretty close what will be in the submitted science paper.
We had a total of 3,517,363 classifications for Seasons 2 and 3 combined. More blotches than fans were drawn, 3,483,724 blotches compared to 2,825,930 fans. With a total of 84604 unique ip addresses and registered volunteers who contributed to Planet Four when Season 2 and Season 3 titles were in rotation. Most classifiers don’t log in. There is no difference between the non-logged in and and logged-in experience on Planet Four other than that if you classify with your Zooniverse account we can then give you credit for your contributions in the acknowledgement website we’ll make for the first paper, and we can only get your name (if you allow the Zooniverse to print it to acknowledge your effort) if you classify with a Zooniverse account.
First plot shows the distribution of the classifications for each tile in Season 2 and Season 3. You can see the impact of BBC Stargazing. Most of our classifications for Season 2 and Season 3 came from the period during and the few months after BBC Stargazing live and the site was getting lots of classifications and attention so we retired titles after more classifications than now. Currently a tile needs 30 classifications before we retire it, a number that better suits our current classification rate. You can see that nearly all of the Season 2 and Season 3 have 30 classifications or more, with a range of total classifications that we have to take into account when doing the data analysis and identifying the final set of blotches and fans from your markings since some tiles will have significantly more people looking at it than others.

The next plot shows the distributions of classifications for logged-in and non-logged in (without a Zooniverse account) classifiers combined for Season 2 and Season 3. We have a way to track roughly the number of classifications a non-logged in session does so I count them as a separate ‘volunteer’ in this plot (note I cut the plot off at 100 classifications for visibility).

You can see that most people only do a few classifications and leave and there is a distribution and a tail of volunteers who do more work. That’s typical of the participation in most websites on the Internet About 80% of our classifications come from people who do more than 50 classifications, typical of many Zooniverse projects. Both the people that contribute a few clicks and those that contribute more are valuable to the project and help us identify the seasonal features on Mars. So thanks for any and all classifications you made towards Season 2 and Season 3, and if you have a moment to spare today there’s many more images waiting to be classified at http://www.planetfour.org.
Tiles and Full Frame Images
I thought I’d go into a bit more into detail about what exactly you’re seeing when you review and classify an image on Planet Four. On the main classification site we show you images from the HIRISE camera, the highest resolution camera ever sent to another planet. Looking down from the Mars Reconnaissance Orbiter, HiRISE is extremely powerful. It can resolve down to the size of a small card table on the surface of Mars. The camera is a push-broom style where it uses the motion of the spacecraft it is hitching a ride on to take the image. During the HiRISE exposure, MRO moves 3 km/s along in its pole-to-pole orbit , which creates the length of the image such that you get long skinny image in the direction of MRO’s orbit. The camera can be tilted to the surface as well, which can enable stereo imaging.
The HiRISE images are too big to show the full high resolution version in a web browser at full size. The classification interface wouldn’t quickly load, as these files are on the order of ~300 Mb! – way too big to email. But the other reason is that the full extent of a HiRISE full frame image is too big and zoomed-out for a human being to review and accurately see all the fan and blotches let alone map them. So to make it easier to see the surface detail and the sizes of the fans and blotches, we divide the full frame images into bite-sized 840 x 648 pixel subimages that we call tiles.
For the Season 2 and Season 3 monitoring campaign, a typical HiRISE image is associated with 36-635 tiles When you classify on the site, you’re mapping the fans and blotches in a tile. Each tile is reviewed by 30 or more independent volunteers, and we combine the classifications to identify the seasonal fans and blotches. To give some scale, for typical configurations of the HiRISE camera, a tile is approximately 321.4 m long and 416.6 m wide. The tiles are constructed so that that they overlap with their neighbors. A tile shares 100 pixels overlap in width and height with the right and bottom neighboring tiles. This makes sure we don’t miss anything in the seams between tiles .
If you ever want to see the full frame HiRISE image for a tile you classified, favorited, or just stumbled upon on Talk, there’s an easy way to do it. On the Talk page for each tile we have a link below the image called ‘View HiRISE image’ which will take you to the HiRISE team public webpage for the observation, which includes links to the full frame image we use to make tiles plus more (note= we use the color non-map projected image on Planet Four). Try out this example on Talk.
So next time you classify an image and recall how detailed it is, remember that although it’s just a small portion of the observation, your classifications are hugely important. Without them we wouldn’t be able to study and understand everything that’s happening in the HiRISE observations. It’s only with the time and energy of the Planet Four volunteer community that we are able to map at such small scales and individually identify the fans and blotches., which is crucial for the project’s science goals. So thank you for clicks!
Goodbye Inca City, Onward to Manhattan
Thanks to your help, the Inca City images we’ve been showing on the site for the past several months are complete, and we’re now back in the region known as Manhattan. We’ve been to Manhattan before, but that was during a different Martian year. HiRISE has been in orbit around Mars for almost 10 Earth years which equates to roughly 5 Martian years. We’re showing new never-before-seen images on the Planet Four website right now. These observations are taken from HiRISE’s 4th Martian spring imaging the development of the windblown fans.
By examining the same region over and over again during different Spring seasons, we can study how this process of forming fans and geysers is evolving over time and how properties like topography, thermal inertia of the soil, presence of different types of spider channels, and changes in the Martian atmosphere impact the properties of the seasonal ice sheet and thus the formation and evolution of the seasonal fans (and by proxy the geysers that form them). In addition, the fan directions and lengths, as well as the presence of blotches, are an excellent probe of wind direction and strength throughout the Martian Spring. With your classification we will be able to see if the winds repeat the same each season or change direction.
For the rest of the South Pole we only have observations from Season 2 and Season 3 classified. With the completion of the previous set of Inca City images, we now have four seasons of fan formation mapping in Inca City. The extra two seasons doubles the temporal baseline we have on Inca City to look for changes and evolution in the fan formation process. The classifications you make now will help us have the same kind of dataset for Manhattan. Having fan and blotch maps for two regions with different topography and locations on the Martian South Pole will help us tease out which effects are due to local conditions and which ones are due to to the changes in the Martian climate (like more dust in the ice sheet).
Help classify the new images of Manhattan at http://www.planetfour.org
PS. If you haven’t tried out Planet Four: Craters, do take a look and classify an image or two. Your classifications and feedback will help improve the design of future Zooniverse projects.
2 Years On from BBC Stargazing Live
In the UK, tonight starts the latest installment of BBC Stargazing Live. Three nights of live astronomy television hosted by Professor Brian Cox and Dara Ó Briain. Just over two years ago, we were preparing for the launch of the Planet Four live on television as part of Stargazing Live. Professor Chris Lintott from the BBC’s Sky at Night and PI of the Zooniverse went out on the program broadcast live from Jodrell Bank and introduced to the world Planet Four, asking for viewers help to map the seasonal fan and blotches visible in images of the Martian South Pole taken by the HiRISE camera.
For the past 9 years, the HiRISE camera aboard the Mars Reconnaissance Orbiter has been capturing stunning and dynamic images of the defrosting South Pole. During this time, carbon dioxide geysers loft dust and dirt through cracks in a thawing carbon dioxide ice sheet to the surface where it is believed that surface winds subsequently sculpt the material into dark fans observed from orbit. 30% of Mars’ atmosphere condenses out to form this ice sheet. Understanding the direction, frequency, and appearance of these fans (a proxy for the geysers) and how these properties are impacted by varying factors we can better understand the Martian climate and how it differs from Earth.
This is a project that we truly couldn’t do with out the help of citizen scientists and BBC Stargazing Live. Hundreds of thousands of fans are visible in HiRISE observations, but for years this rich dataset was not tapped to its full potential. Automated computer algorithms have not been able to accurately identify and outline individual fans in the HiRISE images, but a human being intuitively can distinguish and outline these features. And thus Planet Four was born.
I can remember launch day like it was yesterday, waiting on the Talk Discussion tool for the flood of volunteers to start posting questions and sharing their thoughts and ideas about the images they were seeing. I and the rest of the Planet Four team anxiously waiting at our keyboards could tell immediately when the Planet Four segment aired. The response from Stargazing was incredible and overwhelming. Each night, the Zooniverse servers struggled to keep up serving images of Mars as the number of people on the site continued to rise. Thanks to the Stargazing Live viewers we were able to complete nearly all of the Season 2 and Season 3 HiIRSE monitoring campaign images.
So where are we now? Thanks to help of Planet Four volunteers including Stargazing Live viewers, we’ve made great progress since January 8, 2013. Over 4.6 million blotches and 3.8 million fans have been drawn to date (the great majority of these markings were made during BBC Stargazing Live). In the past two years, Planet Four has captured the equivalent of a full year of non-stop human attention (a single person working non-stop/no breaks for an entire year!). The science team has been working to create a software pipeline to combine the multiple classifications to identify fans and blotches. We have also been working to create an expert dataset classified by the science team for a very small subset of Planet Four images to compare to the volunteer classifications to show that Planet Four citizen scientists are very efficient and effective at detecting the seasonal fans and blotches in the HiRISE images.
I’m pleased to say the science team is very close to submitting the project’s first science paper to a journal before the end of the year (we’re aiming for end of Spring/Summer). We have more than half of the paper draft currently written. One of the last lines of the paper is: ‘We thank all those involved in BBC Stargazing Live 2013.’ This is just the beginning. With this paper, we’ll be able to eventually produce the largest areal coverage wind measurement of the Martian surface to date spanning two Martian years. These maps will reveal how the fan properties and numbers change from Martian year to year and location to location on the South Pole. We also have 3 more Martian seasons of HiRISE data that we’ve just barely scratched the surface of. The majority of these images have yet to be classified, including right before a Martian dust storm, so we can see how the dust storm has impacted the Martian climate and how long its effects last in the atmosphere and the ice sheet by looking at the fans and geysers that are created in the seasons before and after the storm
This year the Zooniverse has something new up their sleeve that will be revealed during the broadcast, but while you’re waiting for the return of BBC Stargazing tonight, if you can spare a minute or two , we could use your continued help mapping the seasonal fans visible in the HiRISE images. There is so much of the South Pole (and 3 additional years of data to get through) that we have yet to study and explore! Classify a HiRISE tile or two at http://www.planetfour.org
Calling All Undergrads: Spend A Summer Working on Planet Four in Taiwan
I’m a postdoctoral fellow at the Institute of Astronomy & Astrophysics at Academia Sinica (ASIAA) in a Taipei, Taiwan. As part of the 2015 ASIAA Summer Student Program, we’re looking for an undergraduate student to come to Taipei for the summer, from July 1st-August 28th, to work on Planet Four related research.
Last year, Chuhong Mai participated in the program and helped get the map project information we need to make the final catalogs for the first Planet Four paper. As a result of her efforts last summer, Chuhong is going to be co-author on the paper. You can learn more about her experience at ASIAA and as part of the summer program here.
ASIAA operates in English, and all research will be conducted in English. The description of this year’s project can be found here. The aim will be help develop tools to look at wind directions based on the Planet Four fan markings for one of the HiRISE targeted regions (likely Inca City or Manhattan) and see how fan directions change from year to year. Details about the Summer Student Program including rules and restrictions can be found here.
Applications are due before March 20th. If you have questions or if you would like to know more, you can contact me via email at mschwamb AT asiaa.sinica.edu.tw
Happy Chinese New Year
As many of you know, I’m currently a postdoctoral fellow at the Institute of Astronomy & Astrophysics at Academia Sinica in Taiwan. For the past year and half I’ve spent most of my time living and working in Taipei. Right now in China and Taiwan, as well as some other places around globe, people are celebrating the Chinese New Year (often referred to as the Spring Festival ), which is based on the lunar calendar. The celebration lasts in total 15 days, and it’s a time people gather and celebrate with family. Chinese New Year is in full swing, and as I’m writing this I can hear some fireworks being set off in the distance.
As part of the festivities, ASIAA created a New Year’s greeting card. The director of ASIAA asked for images and figures representing the range of research going on at the institute to use on the card. I send in images from Planet Four selected with some help from Planet Four Talk, and the images made the cut. Can you spot the two below?
For those celebrating, we wish you a Happy Chinese New Year and a happy and healthy year of the ram.
A Different View of Mars
Okay, so this is not your typical view of Mars. You’re used to the HiRiSE images we show on the site, but the above figure is Mars too. We’ll it’s a spectrum of the upper atmosphere taken by some of the Galaxy Zoo lot , a little over a week ago. I’m collaborating wit them to look at a sample of blue elliptical galaxies in the submillimeter using the aptly named Caltech Submillimeter Observatory (CSO) equipped with the Leighton telescope. It’s a 10.4-m single dish telescope located on the summit of Mauna Kea in Hawaii. I’ve observed with it remotely, but Chris Lintott, Becky Smethurst, and Sandor Kruk from the University of Oxford, and Ed Paget from the Adler Planetarium went up the mountain for this run. Ed’s written an account of the trip that you might be interested in reading: Night 1, Night 2, Night 3, Night 4, Night 5, Night 6.

Leighton telescope at the Caltech Submillimeter Observatory with intrepid observers (left to right): Ed Paget, Sandor Kruk, Chris Lintott, and Becky Smethurst. Image Credit: Ed Paget
As a planetary astronomer I’ve pointed telescopes before, but I’ve observed in the optical and mid-infrared wavelengths using a big hunk of polished glass to collection the photons. This observing project is the first time I’ve ever observed in the submillimeter and used a dish telescope. The aim of this project is to look at the carbon monoxide (CO) in blue elliptical galaxies and see what it says about star formation. We’re actually looking at in particular (2-1) rotational electron transition of the CO molecule. This transition occurs in the rest frame of the gas at 230 GHz, wavelengths where our eyes are not sensitive.
Turns out that the CSO uses Mars as a frequent calibrator and pointing target for the Leighton telescope. The first time I pointed the telescope back last July when we had observing time was the first time I’ve ever observed Mars, and it was just to check the pointing! There’s a lot of carbon dioxide (CO2), as you know. 30% of Mars’ atmosphere condenses out into the slab of CO2 ice in the winter on the South pole that the geysers (and as a result the seasonal fans) will be spawned from. There’s also a lot of CO. CO in Mars’ atmosphere was detected and observed in the submillimeter.back in the 1960s ad 1970s. The result is a strong absorption feature when you observe the disk of Mars and its atmosphere. You can use it to step the beam across as you tune the telescope and find the optimized pointing that gives you the strongest signal (and thus best pointing). So nightly the Galaxy Zoo gang were using Mars for calibration observations at the start of their nightly observations. It’s a very different use for Mars’ atmosphere, but there is useful info in the spectrum you can extract about the state of the Martian atmosphere. The width of the line and depth tell you about the global amount of CO and the global average wind speeds. The guess from the Galaxy Zoo lot that night was that they were seeing something on the order of 10 km/s winds.
With Planet Four, we’ll also be getting estimates of the wind speeds on Mars, but from the bottom of the atmosphere at the boundary layer that meets the surface. So we’ll be probing a different regime that what the can be studied in the submillimeter. Assuming a particle size, the length of the fans can tell us the strength of the wind. The direction the fan is pointing in gives the direction that the wind is heading in. We’ll be able to compare those velocities and directions we extract from you markings to that produced by global climate models of the Martian atmosphere.
Making the Final Push for the First Paper
After two years, thanks to your time and effort we’re the closest ever to submitting the first Planet Four science paper based on Season 2 and Season 3 HiIRSE observations. To make the final push to get the paper submitted in the next several months to a scientific journal, the science team has switched to having telecons every two weeks. As of today, we’ve got more than half the paper draft written. Michael is working on creating the catalog of fans and blotches by combining the multiple classifier markings for each cutout. I’m in the middle of analyzing the gold standard data where the science team classified a small subset of the tiles to compare to the fan and blotch catalog in order to assess the accuracy and recall rate of Planet Four at identifying fans and blotches. Chuhong has completed the pipeline to get the map projection and spacecraft information we need. Everyone, including Anya and Candy, has been working on the paper text.
Thank you for helping us get this far. We couldn’t do this without you, and we still need your help. After doing some checks on the tiles, we realized that a subset of the Season 2 and Season 3 tiles still need classifications to get them over our 30 classification completion limit. We’ve put these images back into rotation on the site, and paused most of the recent Inca City data until these tiles are completed. The faster we get the classifications for the remaining Season 2 and Season 3 images, the faster we can get to producing the final catalog for the first paper and start showing the latest Inca City images again.
If you have some time to spare, let’s make the final push for the first paper. Help map the final set of Season 2 and Season 3 HiRISE observations today at http://www.planetfour.org . Thanks for being a part of Planet Four, and thank you for your help.






