Archive | Site News RSS for this section

A Sneak Peek at the Future of Planet Four

The science team is working on migrating Planet Four to the Zooniverse’s more modern project builder (or panoptes) platform. This is a slow process because things are different in how the newer Zooniverse platform displays images and also we want to take the lessons we’ve learned over the past 6 years and use it to make the web interface even better.  We thought we’d share some screen shots from our work-in-progress prototype.

Screen Shot 2019-04-03 at 8.39.41 PM.png

 

Screen Shot 2019-04-03 at 8.43.15 PM.png

 

Screen Shot 2019-04-03 at 8.48.07 PM.png

The next stage will be getting some images on the site and beta testing the changes we want to make and seeing how well these tweaks do compared to the current Planet Four website/classification interface. This might take a few months, but we’re working hard to have this ready before the end of the year.

In the meantime, we have new images on the original Planet Four website that we are hoping to get classified before the older Zooniverse platform that runs the current Planet Four site is officially retired. We’re trying to make the push in April to get these new images classified. If you can spare a few minutes to classify an image or two on the main Planet Four site, we’d appreciate it.

Exploring Interannual Variability in Manhattan: New Results and New Images on Planet Four

Today we have a post by Candy Hansen, principal investigator (PI) of Planet Four and Planet Four: Terrains.  Candy also serves as the Deputy Principal Investigator for HiRISE (the camera providing the images of spiders, fans, and blotches seen on the original Planet Four project).  Additionally she is a  member of the science team for the Juno mission to Jupiter. She is responsible for the development and operation of  JunoCam, an outreach camera that involves the public in planning images of Jupiter.

We have discovered something very interesting in the number and size of the fans that show up on the south polar seasonal cap every spring, that you are measuring.  It turns out that in springs following both global and regional type A dust storms we see a lot more fans than normal for that time of year.  This picture compares sub-images from 7 Martian years taken in “Manhattan” at solar longitude 195-197.   The position of Mars in its orbit is the solar longitude (“Ls”), and southern spring begins at Ls 180 when the sun crosses the equator and heads south.   Mars years 29, 30 and 33 have visibly more fans.   There was a global dust storm in Mars Year (MY) 28 that started in early summer.  Intense Type A storms, which are regional and centered at high southern latitudes, took place in MY29 and MY32.  It looks like the spring after these storms have large numbers of seasonal fans.

variability_Ls_195-1

Although the visual impression is powerful when these images are compared we can go beyond that now, thanks to the Planet Four fan catalog  that your work has populated.  We can quantify the differences. We used the MY29 an MY 30 catalog that we’ve published this year in our first paper, and also newly generated catalogs for Manhattan for MY 28, MY31, MY 32.   Instead of just saying “there are a lot more fans” we can say “there are over twice as many fans” in MY29 and MY30 compared to MY28, 31 and 32.   We do that by querying the catalog – an example is shown below.  The plot below shows numbers of fans as a function of time in the spring and we can compare 5 years at Ls 195.  I had the pleasure of presenting this (your!) work at the 2019 Lunar and Planetary Science conference last week in Houston, Texas.

Manhattan Classic_fan_area_vs_fan_nr_5MY_v3.pngManhattan Classic_fan_nr_vs_ls_5MY_v2.png

To confirm that Type A storms are playing a significant role in the composition of the seasonal ice sheet that produces the carbon dioxide jets that bring up the dust and dirt that create the seasonal fans and blotches, we need to look at the number of seasonal fans and the area covered in MY33.  We only have classifications for Seasons 1-5 of the HiRISE seasonal monitoring campaign (MY28-32). This brings me to my request:  We would really like to have Planet Four measurements for MY33.  We have uploaded the images, so it is ready for you to process.  We would like to thank you in advance for your generosity with your time.   Once those measurements are in we will be ready to write our next paper documenting these findings in a peer-reviewed scientific journal.  As you know we have published one paper already and two more are in progress.  This is a significant result, and we could not have done this without all of you.

Help classify the new images of Manhattan today at http://www.planetfour.org.

 

 

6 Earth Years of Planet Four

Happy Birthday Planet Four. This month marks 6 years of Planet Four. We couldn’t do any of this without the Planet Four volunteer community.  Thank you for all of your help and contributions. We hope you’re celebrating with a slice of cake or  a serving of Mars pie. The team is really excited for what’s to come next. We’re working hard on follow-up papers to the first fan and blotch catalog release.  We’re also starting preparations to move the project to the Zooniverse’s newer Project Builder Platform.  We’ll keep you posted on all of these efforts right here on the blog. Lots more to come in 2019!

 

New Meridiani Images on Planet Four: Ridges

After a hiatus, Planet Four: Ridges is back! We’ve get the second batch of Meridiani ridges search images live on the site. We’re finding from the analysis of the previous search classifications for regular polygonal ridges, that Planet Four: Ridges volunteers can identify polygonal ridges smaller than contained in previous catalogs. We expect the project can do the same for Meridiani ridges. Dive in today at https;//ridges.planetfour.org and classify an image or two.

5e93def8-a4b0-4359-9a31-b02d40a6509c

Planet Four: Terrains Tutorial

You might have noticed that in July we added a tutorial to Planet Four: Terrains. After some changes to the front-end part of the Zooniverse platform, the team decided to add  the tutorial.  You’ll find it on the tab next to ‘Task’. There should be some new examples to help guide you while classifying. If you were a fan of the original help button and Spotter’s guide, don’t worry those are still available as well.

Screen Shot 2018-09-03 at 4.56.10 PM

We’re in the middle of going through a new suite of images on the site. Dive in and check out the new tutorial and classify a few images today at http://terrains.planetfour.org.

New Images on Planet Four: Terrains

We’ve uploaded new images to Planet Four: Terrains this week. This dataset continues to fill in areal coverage to look for spiders outside of the south polar layered deposits and also examining the overall distribution of spiders and other features.

You’ll notice some changes to the look of the classification interface. Over the past several months, the Zooniverse development team has made updates and changes to the classification pages.  This  Zooniverse Talk thread is where you can share your thoughts and feedback on the new look.

Dive in today a http://terrains.planetfour.org

One (Earth) Year of Planet Four: Ridges

Today we have a guest blog by JPL research scientist Laura Kerber,  our lead researcher on Planet Four: Ridges. Laura studies  physical volcanology, aeolian geomorphology, wind over complex surfaces, and the ancient Martian climate.

Dear Ridge Hunters,

Can you believe that it has been a year since we started to hunt for ridges??? We have accomplished a great deal in the space of a year! With 7,784 volunteers, we have made 135,976 classifications! We finished our first region (parts of Deuteronilus Mensae), second region (Protonilus Mensae) and third region (Nili Fossae)! We are now working on our fourth batch of images—from a new region in Meridiani Planum, closer to the currently operating Opportunity rover. Mapping our first three regions allowed us to understand the distribution of Nili-like ridges close to two of the Mars2020 rover candidate landing sites, and allowed us to see what sorts of geologic units were associated with the ridges. We found out that the ridge-bearing units are often buried units, and that polygonal ridges were almost never found in glacial terrain. There also wasn’t a strong correlation between craters and ridge networks. There was a strong correlation, however, between ridge units and ancient terrain from Mars’ oldest geological period, the Noachian. As its name suggests, the Noachian was a time when water was abundant on the surface of Mars. Our ridge discoveries suggest that the subsurface was also the site of extensive water-related processes. Since the subsurface would have also been protected from harmful UV rays, this watery environment could have been an interesting place to foster life.

Here is a map showing the ridges that were known before this project (green) and the enormous number of ridges in fine detail that we mapped throughout Nili Fossae (red):

Picture1

But wait! There’s more! Intrepid ridge-hunter @bluemagi ventured outside of the Zooniverse-defined regions and is currently conducting a planet-wide search for more ridge-bearing regions. Here’s a map of the simply astonishing findings of @bluemagi across the rest of the planet (added in blue), which were transformed into an amazing .kmz file for Google Earth by @frognal! Check out their handiwork here and see if you agree with @bluemagi’s interpretations!

Picture2

Thanks everyone, for a year full of amazing surprises in Planet Four: Ridges. Here’s to another year of exploring the planet Mars together!

5 Earth Years of Planet Four

Today we have a post by Dr. Candice (Candy) Hansen, principal investigator (PI) of Planet Four and Planet Four: Terrains. Dr. Hansen also serves as the Deputy Principal Investigator for HiRISE (the camera providing the images of spiders, fans, and blotches seen on the site). She is also a Co-Investigator on the Ultraviolet Imaging Spectrograph on the Cassini spacecraft that orbited around Saturn until the end of its mission last year. Additionally she is a  member of the science team for the Juno mission to Jupiter. Dr. Hansen is responsible for the development and operation of  JunoCam, an outreach camera that will involve the public in planning images of Jupiter.

Last week marked the 5th anniversary of Planet Four’s launch. Five years ago,  I was sitting in a meeting only partly paying attention.  I was focused on the brand new Planet Four website – it had just gone live and took off like a rocket.  I kept hitting refresh, enjoying each of the new introductions in the “Hello Everyone!” chat.

Now we have a community.  When I lurk (which I still love to do) I recognize the names – Pete J, wassock, Kitharode, angi60, p.titchin, ….  My heartfelt thanks go to Meg Schwamb for engaging with our citizen scientists on a regular basis!

Five years on you have measured fans and blotches in over 5 million HiRISE image cutouts.  We’ve applied statistical analysis and turned that into a catalog.  We can now query the catalog (where is the longest fan?  Which way is the wind blowing in Manhattan at the beginning of spring?)   We are very close to submitting our first paper describing the catalog with samples of potential results that can be pulled from it.  The second paper is already shaping up with comprehensive results for wind directions throughout spring – these results are the gold we were hoping for when we started this citizen science project.  The vision we had in the beginning is now coming true.

Right now we use models to understand Mars’ meteorology.  In order to test the models we need data – wind markers.  The atmospheric modeling scientists are very excited about seeing our results – results we wouldn’t have without your efforts!  Thank you as always for your generosity with your time!!

 

More on Merdiani-type Polygonal Ridges

Today we have a guest blog by JPL research scientist Laura Kerber, one of  our lead researchers on Planet Four: Ridges .  Laura studies  physical volcanology, aeolian geomorphology, wind over complex surfaces, and the ancient Martian climate.

Merdiani-type Polygonal Ridges

 

Merdiani-type Polygonal Ridges

Hello Ridge Hunters!

We are nearing the end of the year on Earth, but we’re only in Martian month 4 on Mars (Solar Longitude = 99.2; Sol number = 214). But what a year on Earth it has been for Planet Four: Ridges. Since our launch on January 17th, thanks to 7,453 registered volunteers, we have retired 11,999 images! We have mapped ridges the length and breadth of the dichotomy boundary near Protonilus Mensae, Nilosyrtis Mensae, and Nili Fossae.

We are now moving into the strange and wondrous land of Sinus Meridiani, not too far from where the Opportunity Rover has been roving along at what might be the shore of a vast, ancient inland sea. The ridges in this new area are different—they are flat on top and splintered, and they can be dark or light compared to the background terrain. Instead of true polygons, they make broken circles. Take a look at the update tutorial to see examples of this new and strange type of ridge. By mapping ridges in Sinus Meridiani, we can compare and contrast them with their more northerly brothers, and determine why their morphologies are so different and what this meant for their environment and process of formation.

Happy Ridge Hunting, and if you find anything strange, let us know in the comments!

Planet Four: Ridges is Back

We’re thrilled to announce that Planet Four: Ridges is back. We’ve completed the Arabia Terra search for now, and today we’ve launched a new workflow to search for a different type of polygonal ridge that we’ve searched for previously. This new type of polygonal ridge is found in Sinus Meridiani,  a darker area of Mars located in the northern midlatitudes of  just south of the equator. You can see it’s located below Arabia Terra, the previous region we’ve been searching.

61c0fcbd-7c57-452b-9fff-f9fdae5bf651

Hubble Space Telescope Image of Mars. Arabia Terra is the large triangular shaped region in the center. Sinus Meridiani can be seen as the darker region below Arabia Terra. Image Credit: NASA, ESA, and L. Frattare (STScI)

Meridiani-type polygonal ridges often look like broken spider webs or tattered lace. These ridges do not usually form neat boxy shapes, but they can be interconnected, looping, or branching. We need your help to identify these features, so that we can see if the Meridiani-type polygonal ridges follow the same trends we’re in seeing in the Arabia Terra polygonal ridges.

Meridiani-type Ridges in CTX subframes

We are continuing to work on analyzing and reducing the classifications from the Arabia Terra search. You can learn more about that in this previous blog post from Laura.

Dive back into Planet Four: Ridges today at http://ridges.planetfour.org