Footprints of the HiRISE observations
I’ve been learning to use JMARS (Java Mission-planning and Analysis for Remote Sensing) to plot the coverage of the CTX images for Planet Four: Terrains. JMARS is a really nice tool for overlaying observation footprints and different maps and datasets on top of each other for Mars and other planets.
I decided to take a look at what the HiRISE Season 2 and Season 3 observations, that the science team is currently working on writing up, look like on a map of the South Pole when you plot their physical coverage on the pole . You can really see the overlap and what a small area that HiRISE covers compared to CTX.
Here’s the footprint HiRISE observations for Seasons 2 and 3 outlined in red on the elevation and topography map of the Martian south pole (latitude and longitude lines are in 10 degree intervals).

Here’s a zoom in on one of our favorite regions, Inca City. You can really see the repeat coverage outlined in white in this case.

Here’s another zoom in of a different area, where you can see multiple seasonal targets outlined in red:

For comparison here’s the footprints of the first set CTX images (latitude and longitude lines are in 10 degree intervals). The colors represent geologic units, but for this comparison we’re focusing on spatial distribution and coverage.

Countdown to Picking New Proposed HiRISE Targets
One of the key goals of Planet Four: Terrains is to identify new areas of interest to observe with HiRISE during the seasonal processes campaign so that we better learn about the carbon dioxide geyser process and about how and were spiders and related channels form. You can read more about the particular goals of Planet Four: Terrains here. Over the months we’ve read the discussions and comments on Talk and been making a list of regions to consider from your observations. We’re really intrigued by many of the things you’ve all spotted. Which is fantastic news! Talk has been a huge asset for this work, but we’re also using the classifications from the classification interface as well. I’ve spent the past three weeks putting together a software pipeline to take the multiple classifications per CTX subframe (typically 20 people review each subject image) to identify spiders, baby spiders, channel networks, craters, and the Swiss Cheese Terrain.
Now that the machinery is all together combined with the interesting gems on Talk we’re ready to make our list of proposed new HiRISE monitoring targets. By April 20th I aim t provide the rest of the Planet Four: Terrains science team a compiled list of locations for them to review. Then Anya will input these into the HiRISE planning system where they will be considered with the HiRSE team’s science goals and eventually Candy who wears many hats including Deputy Director of the HiRISE camera and lead of the seasonal processes campaign will prioritize these new areas with the already existing targets in the seasonal processes observing program. We aim to be ready for HiRISE’s first attempt to image the South Pole which is coming up in about 60 days or so.
This is where you come in. We have new images of different areas on the site now. There have already been some interesting images from this set I’ve forwarded to the rest of the team after seeing discussions on Talk. Let’s make a push to classify as much of the new data set as possible before the 18th of April. The more subjects reviewed the greater chance to include those areas at the start of the monitoring campaign. Not to worry though, we’ll also have a few chances to include additional targets later in the Spring Season to the HiRISE monitoring campaign if need be or to the next one.
If you have a free moment, classify an image or two at http://terrains.planetfour.org
New Images on Planet Four: Terrains
Thanks to your help we’ve added in new images to Planet Four: Terrains. Like the image above, these are additional locations on the South Pole that we hope might contain activity from the seasonal carbon dioxide geysers. These images have never been looked at by humans in such detail before. Who knows what interesting things you might find.
Help classify an image or two today at http://terrains.planetfour.org
Some More Example Terrains
Over the past couple of days, I’ve started looking at the Planet Four: Terrains classifications data. I’ll be looking at how best to combine the assessments to identify the different terrains, but for now I’m taking a preliminary look at the raw data. I tallied up the votes for each of the images we’ve shown on the site that have been completed (have had at least 20 independent reviews). Perusing the results I have found some nice examples that I thought I’d share below.
Swiss Cheese Terrain
Craters
Channel Network
You can also find more examples on our Site Guide.
Why we need Planet Four: Terrains?
Hi there!
I want to talk why we created the new project Planet Four: Terrains if we have Planet Four already.
The very high resolution images of HiRISE camera are really impressive and one might think that there is no reason to use a camera with lower resolution anymore. Wrong!
First, high resolution of HiRISE image means large data volume. To store on-board and to download large data from MRO spacecraft to Earth is slow (and expensive) and this means we are always limited in the number of images HiRISE can take. We will never cover the whole surface of Mars with the best HiRISE images. Sadly. so we use different cameras for it. Some – with very rough resolution and some – intermediate, like context camera (CTX). We can use CTX, for example, to gain statistics on how often one or the other terrain type appears in the polar areas. This is one point why Planet Four: Terrains is important.
Second, because HiRISE is used for targeted observations, we need to know where to point it! And we better find interesting locations to study. We can not say “let’s just image every location in the polar regions!” not only for the reason 1 above, but also because we work in a team of scientists and each of them has own interests and surely would like his/her targets to be imaged as well. We should be able to prove to our colleagues that the locations we choose are truly interesting. To show a low-resolution image and point to an unresolved interesting terrain is one of the best ways to do that. And then, when we get to see more details we will see if it is an active area and if we need to monitor it during different seasons.
Help us classify terrains visible in CTX images with Planet Four: Terrains at http://terrains.planetfour.org
Introducing Planet Four: Terrains
Dear Martian Citizen Scientists!
We are excited to introduce to you a new companion citizen science project to Planet Four called “Planet Four: Terrains” built on the Zooniverse’s new platform. You have explored with us here in Planet Four some of the most detailed surface observations ever made in our solar system and many of you have acknowledged and wondered about all the other amazing features visible in these images that we did not ask to be studied, like spiders, networks of channels and weirdly looking craters. (some of you will remember that one of these even led to a re-observation of the same crater with the HiRISE camera).
It is an interesting fact that when one decides to make a camera that can resolve a lot of small details, that it will not be able to scan a lot of area. One has to decide, as long as we don’t have infinite data transport capabilities and infinite mission time at other planets and moons in the solar system. That’s why the Mars Reconnaissance Orbiter (MRO), the spacecraft that houses the HiRISE camera that produced all the images in the Planet Four project has a complementary camera system onboard to provide context, appropriately called CTX for ConTeXt camera. It has a lower resolution than HiRISE (approx 5-6 m compared to HiRISE’s 25 to 50 cm) but takes images from a far larger region than HiRISE.
So here is our idea: We confirmed that many of the features you were asking about are still recognizable with the lower resolution images of CTX. Therefore we would like your help in gathering spatial statistics in where around the south pole we can find which kind of patterns on the ground that are related to CO2 ice activities. Your help in classifying CTX data into a set of ground patterns will serve to decide where the HiRISE camera will be pointed next during 2016’s south polar spring season observation campaign. This way your contributions directly improve the scientific output of both CTX and the HiRISE camera and we are very excited to provide to you a way to point the highest resolution camera in the solar system to the most interesting areas of the Martian south pole!
You can find the new project, a more detailed science case description and an awesome spotter’s guide at this address: http://terrains.planetfour.org
Thanks as always for your time and your enthusiasm!
Michael












