Making Tables

A quick update on the first paper. We’re getting closer to having the final clustering procedure nailed down. Once we’ve got that, we can make the final catalog of markings from Season 2 and Season 3 from the millions of classifications we have gathered over the past few years. While Michael has been working on that, I’ve been working on some of the other tables we need to include for the paper. We know what we’ve done and have good knowledge of the HiRISE data, but we need to make sure it’s clear in the paper so that any researcher or reader has all the information needed to use the catalog of fans and blotches we’re generating thanks to your clicks. To do that we’re going to put in a table that summarizes all the relevant info about the HiIRSE observations from Seasons 2 and Season 3.

The easiest way I found to do this is to grab this information from the headers of the reduced single HiRISE images non-map projected images with the spacecraft pointing information that we created from the raw HiRISE observations. The HiRISE team reduction pipeline produces the three color band mosaics that we dice up and show on http://www.planetfour.org but since they don’t include the spacecraft information we had to  build a single filter version ourselves where we added a few steps to the process that would allow the information needed to get the location on the South pole and the spacecraft information into the image headers. This is what Chuhong worked on last summer.

So I took a script written by Gauri adapted from Chuhong’s code to get the other relevant info like imaging scale, north azimuth, solar longitude from the single filter image headers and stick it in a mysql  (a database interface language/setup) table.Then I spent a bit of time writing a code to read the table I created and output it in the format needed for the paper. We’re writing the paper in a format known as LaTeX. I spent an afternoon getting the format correct so that table file would compile. You can glimpse part of the results (the first few lines of the multi-page table) below. I still need to reduce the number of decimal places outputted in certain columns, but the basic information is there. We’ll be including a version of this table in the paper text or supplementary material.

hirise_pointings

Boulders and a Planet Four Summer

Today we have the last  post from Gauri Sharma who is spent her summer working on Planet Four as part of the ASIAA Summer Student Program.  Gauri gave a talk at the end of August detailing her work with boulders and developing a pipeline to find the same position in one Planet Four image in others shown on the site. Below Gauri presents her talk slides and her project. Thanks Gauri for all your help this Summer!

FP.001
I am gonna introduce you some of the features found on Mars’ South Pole and tools used to study these features. I will also tell quick logical science behind those features according my research in these last two months.

FP.002
This slide tells you how Mars similar and differ from the Earth.

FP.003
During the winter on South pole a, CO2 ice slab forms over the pole is nearly translucent and ~1m thick. When the ice slab forms, it comprises of frozen carbon dioxide and dust and dirt from the atmosphere. Below the ice sheet is layer of dust and dirt.

FP.004
When the spring comes sunlight penetrates the CO2 ice slab, and the base of the ice cap gets heated. The temperature of the ice at the base  increases causes CO2 sublimation. Sublimation of CO2 creates a trapped pressurized gas bubble beneath the ice layers, These beneath pressurized gas bubbles continuously pushes the upper layers of ice and at one point ice slabs get crack and pressurized gases vent out. A jet like eruption or geyser takes place. It is thought that material (dirt and dust) from below the ice sheet which has been taken by pressurized gas is brought up the surface of the ice sheet and is blown by the surface wind into a fan shape.

FP.005
It is prediction, just after eruption Geysers supposed to look like this.

FP.006
When there is enough wind on surface to blown the geysers material fans appears on surface and surface looks like fig1.
If wind is not much effective or not blown then geysers material deposits near the geyser source and a black spot appears on surface called blotches (shown in fig2).

FP.007
Also during the spring and summer when the geysers are active, the trapped carbon dioxide gas before it breaks out from under the ice sheet is though to slowly remove material and carve channels in the dirt surface. In the mid summer when CO2 fully get vaporized channels are empty cracks. This is annual process of over time produces erosion on surface and channel network looks like spiders (or their official name araneiform).

FP.008
In every spring and summer season, hundreds of thousands of fans wax and wanes on the Martian South Pole. These features have been captured by then HiRISE camera. HiRISE camera is onboard on Mars reconnaissance orbiter since 2005.

FP.009
These are the sample images captured by HiRISE camera.
During analyzing of these images, scientists found difficulties, Automated computer routines have not been able to accurately identify and outline the individual feature. But scientists thought a human eye eventually can distinguish and outline these features and shape them. So, A group of scientists created Planet four website purposefully for research on Mars by public help.

FP.009 FP.010
This is how, Planet Four website looks like. Working with Planet Four is very easy, just sign up in Planet Four website and take in part of classify shapes on surface. Before getting started they provides a short intro to let you know “How to mark, and useful tools to classify features”. Volunteer classification are collected together and researchers combines these classifications (markings), and they found these markings produces an extremely reliable, fruitful results about features founds on Mars surface.

FP.011
In slide 10, we seen Planet four images looks different from real images taken by HiRISE camera. Since HiRISE image is huge in size. So for proper analysis and accurate outlining Planet Four team made sub images of HiRISE images and kept them in Planet Four website, we call them tiles.

FP.012

For my project Planet Four was one of the most important tool. I use Planet Four tiles to examine boulders. Boulders are one of the more interesting objects on Mars surface, and in the South Pole regions monitored by HiRISE only one area seems to have boulders. This region has been dubbed ‘Inca City.’ The boulders in Inca City are likely impact produced. Boulders are Interesting because we think they can help be a heat source of geysers formation. I am looking at how fans are associated with boulders more often than not and has been captured by HiRISE. I studied how surrounding of boulders changes time by time, are they really takes part as the source of geyser formation”.

I chooses some 35 tiles those contains BOULDERS and marked all BOULDERS (shown in fig2). After marking Planet Four provides a makings csv file. That contain your marked BOULDER x and y position and corresponding tile name.

FP.013
To analysis surrounding of  BOULDERS over a time, I need to search over the HiRISE 5year database with the help of markings csv received by Planet Four. Since HiRISE database contain more than 1 lacks tiles. Doing search manually and find useful data and then calculate information, collect belonging files and group them for looking yearly changes seems terrible.
So for this purpose I created a pipeline that can do all this in seconds. This is a very powerful pipeline that Planet Four team doesn’t have  before me.

 FP.015
These are the results of my pipelines.
Images in blue box clearly shows, During a season as the month changes surrounding of boulders changes (fans wax and wanes) boulders gets covered with fans material and in next season again boulder start visible.,,,

FP.016
FP.017 FP.017 FP.018 FP.019

FP.020 FP.021 FP.022 FP.023

Spiders in the South Polar Layered Terrain

Previously I talked about the South Polar Layered Deposits  (SPLD) that you’ve probably seen in some of the images you’re reviewing  on Planet Four: Terrains. Last week on Talk, I learned something new. Volunteer Ray noticed this image:

aeee8a27-b5f8-4ebb-9025-a7b1128df5cc

I thought it was pretty neat to see spiders directly carved into into some of the bands  of the SPLD. According to the rest of the science team, this can be a frequent experience, and they’ve seen it before. This was my first time encountering that, so I thought I’d share.Thanks Ray for spotting this.

Spider formation is caused by carbon dioxide gas trapped underneath a sublimated ice sheet during the Spring and Summer on the south pole of Mars. Eventually the gas breaks escapes through the ice sheet creating geysers but in the process it also exploits weaknesses in the surface regolith creating spiders. For some reason it appears those sections of the SPLD are weaker.

You can find more finds like this by classifying CTX (Context Camera) images of Mars’ south pole at http://terrains.planetfour.org

New Data Live – Giza Season 1

Thanks to your help making the push to classify images of Ithaca Season 1 to make room for new data,  we have mixed in new data live to the remaining Ithaca images we’re showing on the site. We added Season 1 images from a new area of the South Pole nicknamed ‘Giza.’  These images have never been reviewed in such detail before. With your help we can identify and map all the season fans and blotches.

Here’s what  Candy Hansen, principal investigator (PI) of Planet Four had to say about Giza:

Giza is an important region for us to study for several reasons. The study of weather in the polar region benefits by having samples from numerous locations – and Giza is distant enough from the others that you’ve been working on (Manhattan, Inca City, and Ithaca) that we will have another good sample for the atmospheric models. The fans also show an interesting evolution (take a look at this animation) that will help us to understand how particles sink into the ice. We may end up with a better understanding of what causes the bright fans to form. Finally, the channels here are a bit wider than elsewhere – are they older or is the ground more easily eroded?

With your help we are pondering these puzzles! Classify images of Giza at http://www.planetfour.org

Making Room for New Images

We’re gearing up to add some new data live to the site, but we need your help. We’re currently showing images of the region dubbed ‘Ithaca’ from Season 1. We’d like to start showing images from another target area of interest. To do that, we need to make some room. So let’s make the big push this week to classify Ithaca images, so that next week we can add Season 1 images of the area nicknamed ‘Giza’ by the HiRISE team.

Below is  a map to give you a sense of where Giza is compared to the other targets of interest in Season 1 that we’ve been focusing on previously.

cryptic_area

If you have time to spare, please classify an image or two so we can show you images from a brand new area in Season 1. Let’s make it to Giza. Map some fans and blotches today at http://www.planetfour.org

 

 

Some More Example Terrains

Over the past couple of days, I’ve started looking at the Planet Four: Terrains classifications data. I’ll be looking at how best to combine the assessments to identify the different terrains, but for now I’m taking a preliminary look at the raw data. I tallied up the votes for each of the images we’ve shown on the site that have been completed (have had at least 20 independent reviews).  Perusing the results I have found some nice examples that I thought I’d share below.

Swiss Cheese Terrain
 Image Credit:NASA/JPL-Caltech/Malin Space Science System

Image Credit:NASA/JPL-Caltech/Malin Space Science System

 Image Credit:NASA/JPL-Caltech/Malin Space Science System

Image Credit:NASA/JPL-Caltech/Malin Space Science System

 Image Credit:NASA/JPL-Caltech/Malin Space Science System

Image Credit:NASA/JPL-Caltech/Malin Space Science System

Craters
c7247949-99ef-4419-81e0-b1ea997a13e7

Image Credit:NASA/JPL-Caltech/Malin Space Science System

2a18f673-3ef3-4985-a750-a8578fa488c9

Image Credit:NASA/JPL-Caltech/Malin Space Science System

 Image Credit:NASA/JPL-Caltech/Malin Space Science System

Image Credit:NASA/JPL-Caltech/Malin Space Science System

Channel Network
 Image Credit:NASA/JPL-Caltech/Malin Space Science System

Image Credit:NASA/JPL-Caltech/Malin Space Science System

 Image Credit:NASA/JPL-Caltech/Malin Space Science System

Image Credit:NASA/JPL-Caltech/Malin Space Science System

 Image Credit:NASA/JPL-Caltech/Malin Space Science System

Image Credit:NASA/JPL-Caltech/Malin Space Science System

You can also find more examples on our Site Guide.

Seasonal Processes and Wind Direction on Mars South Pole

Today we have a  post from Gauri Sharma who is working on Planet Four this summer as part of the ASIAA Summer Student Program. Today Gauri gives an all overview of her project and the seasonal processes on Mars’ south pole.

My project is on “seasonal processes and wind direction on Mars south pole”, I read about how seasons and winds really taking part on the surface and inside atmosphere of Mars. So, I am gonna introduce you some of the features found on Mars’ South Pole and tools used to study these features. I will also tell quick logical science behind those features according my research in these last two months.

Currently the rotational period and seasonal cycle on Mars are similar to the Earth, as is the tilt causes the seasons, But scientists do not measures year for Mars in days or month as we measures on Earth. Its calculated by Solar longitude (Ls), when Ls = 180 there is first day of spring on south pole, It’s known as “Martian vernal” equinox too. The seasons on Mars differ from those on Earth, as the atmosphere is much thinner and compromised primarily of carbon dioxide. When winter season comes, one of the poles is fully in darkness and temperatures get low enough that-out 25-30% of atmosphere snows out as carbon dioxide (CO2) ice slabs forming polar ice caps.

During the winter on South pole a, CO2 ice slab forms over the pole is nearly translucent and ~1m thick. When the ice slab forms, it comprises of frozen carbon dioxide and dust and dirt from the atmosphere. Below the ice sheet is layer of dust and dirt. When the spring comes sunlight penetrates the CO2 ice slab, and the base of the ice cap gets heated. The temperature of the ice at the base increases causes CO2 sublimation. The temperature on Mars south pole in spring is -78 °C (351K) but dry CO2 triple point is on 7 pascal and -53°C (220 K), So According to thermodynamics when temperature and pressure of any substance is above the triple point sublimation takes place). Sublimation of CO2 creates a trapped pressurized gas bubble beneath the ice layers, These beneath pressurized gas bubbles continuously pushes the upper layers of ice and at one point ice slabs get crack and pressurized gases vent out. A jet like eruption or geyser takes place. It is thought that material (dirt and dust) from below the ice sheet which has been captured by pressurized gas is brought up the surface of the ice sheet and is blown by the surface wind into a fan shape. When the wind is not strong enough or not blowing, the material is thought to deposit around the geyser source like spot or blotch on the surface At the end of the summer, the ice is gone the fan’s material disappears and blends back in with surface remaining.

Also during the spring and summer when the geysers are active, the trapped carbon dioxide gas before it breaks out from under the ice sheet is though to slowly remove material and carve channels in the dirt surface. In the mid summer when CO2 fully get vaporized channels are empty cracks. This is annual process of over time produces erosion on surface and channel network looks like spiders (or their official name araneiform).

In every spring and summer season, hundreds of thousands of fans wax and wanes on the Martian South Pole. These features have been captured by then HiRISE camera. During analyzing of these images, scientists found difficulties, Automated computer routines have not been able to accurately identify and outline the individual feature. But scientists thought a human eye eventually can distinguish and outline these features and shape them. So, A group of scientists created Planet four website purposefully for research on Mars by public help. On this website scientists provides HiRISE images in the form of subimages or what we call tiles. A HiRISE image is ~20,000 × 126,000 pixels and each pixel covers ~0.3m surface of Mars. The image is big so that HiRISE images are diced into tiles that are shown on the Planet Four website. Working with Planet Four is very easy, just sign up in Planet Four website and take in part of classify shapes on surface. Before getting started they provides a short intro to let you know “How to mark, and useful tools to classify features”. Volunteer classification are collected together and researchers combines these classifications (markings), and they found these markings produces an extremely reliable, fruitful results about features founds on Mars surface.

For my project Planet Four was one of the most important tool. I use Planet Four tiles to examine boulders. Boulders are one of the more interesting objects on Mars surface, and in the South Pole regions monitored by HiRISE only one area seems to have boulders. This region has been dubbed ‘Inca City.’ The boulders in Inca City are likely impact produced. Boulders are Interesting because we think they can help be a heat source of geysers formation. I am looking at how fans are associated with boulders more often than not and has been captured by HiRISE. I studied how surrounding of boulders changes time by time, are they really takes part as the source of geyser formation”.

I will talk about the rest of my analysis in next blog post. Till then bye…

The South Polar Layered Deposits

While classifying on Planet Four: Terrains images you might have seen images like these:
0ded4d72-88c7-41e2-b8de-b95c523a87f8

f80384ff-052b-4d1a-83d4-1fc13faba4ae

5f0a0579-3c76-4837-9dfc-7be0ade991aa

e9e82fb2-491b-4e29-a412-01dfdde32729

These banded layers are part of what is known as the South Polar Layered Deposits (SPLD) (an equivalent version exists on the North Pole of Mars as well). There is dust and water ice composing these layers. The SPLD has been measured to have a height of  ~4 km and covering a surface area of ~90,000 square kilometers.  Unlike the temporary seasonal ice cap which is comprised of carbon dioxide, the 1.6 million cubic kilometer SPLD is mainly water ice mixed with dust comprising on the order of 10% volume of the entire structure. Above this SPLD sits the very thin temporary  (1-10 m) cap of  amount of carbon dioxide ice/frost that snows out in the winter and sublimates over the spring and summer seasons. In 2011, it was discovered by radar sounding that although the structure is mainly water ice and dust there is a  buried reservoir of carbon dioxide ice within a section of the SPLD, with a  volume of 9500 to 12,500 cubic kilometers. If this frozen gas was exposed and released in contact with the current Martian atmosphere, the atmosphere would almost double in its inventory  of carbon dioxide by mass.

How the SPLD layers are exactly deposited and whether there are new layers actively forming are open questions. The exact age of the SPLD is unknown. We know there is a heavily cratered terrain that covers much of the Southern hemisphere, but there are relatively few craters on the actual surface of the SPLD. This suggests that the top of the SPLD  is about 10 million years in age, relatively a youngster in terms of geological time scales.  The fact there is banding indicates the existence of a repetitive cycle that built up the SPLD and its northern equivalent over time. The darkness and thickness of the banding is thought to be controlled by the amount of dust present in Mars’ atmosphere (and likely by the past frequency of global Martian dust storms).  The SPLD then likely represents a locked away record of the Martian atmosphere at the time of deposition, showing how dusty the atmosphere was compared to the water vapor present. If we can understand the formation mechanism, then we would be able to read this natural historical record.

One other important thing about Mars is that without a large moon like the Earth has, Mars’ axial tilt swings significantly  over time up to ~60 degree obliquity, which can put the poles in significant light and darkness. This giant swings in axial tilt (as well as other orbital properties occur in cycles known as Milankovitch cycles). The increased summer and longer winters likely impact dust storms and the formation of the SPLD, but what role it plays is still an active area of study.

The extent of the SPLD has been mapped both with ice penetrating radar and a laser altimeter aboard orbiting spacecraft , so that is why it is not list as of one of the categories to select on Planet Four: Terrains. While we’re not asking you to identify the Solar Polar Layered Deposits in the classification interface,  if you’re interested in identifying them in the CTX  images you can add a hashtag in Planet Four Terrains: Talk  (we recommend #spld ) or you can make a collection of those images.

Planet Four Giveaway

Yesterday was the 10th anniversary of the launch of  Mars Reconnaissance Orbiter.  Strapped to  an Atlas V rocket, the spacecraft was sent it on its way from  Cape Canaveral Florida to its ultimate destination, the Red Planet. Ever since its arrival after a 7 month journey and orbit insertion in March 2007, the orbiter and the HiRISE camera have been instrumental for larger and ever more sophisticated robot rovers and landers being sent to explore Mars. Equipped with the Context Camera (CTX) and the HiRISE camera among other instruments, MRO has been watching how the planet has changed for nearly 10 Earth years. I can remember in 2008, the PI of Planet Four, Candy Hansen, showing me some of the first images taken of the South Pole by HiRISE. It’s amazing to think that the instruments are still doing cutting edge science and producing a long term dataset that enable scientists and the public to get a birds eye view of the Martian surface and see how it is changing over time.

This has been especially true for the seasonal processes campaign which focuses in large part on HiRISE imaging of the  fans and spiders on the South Pole of Mars. We present you those images on the Planet Four website in order to map the  dark fans and blotches and see how their appearance and location on the Sole Pole change over a season and over the 5 Martian years. Your efforts on Planet Four are important in our quest to understand the Red Planet.As a way to give back and say thanks for your time and effort marking fans and blotches, we’re setting up a  giveaway to mark this MRO anniversary. Starting on this coming Sunday (August 16, 2015) for the next four weeks, we’ll be giving away  some lovely HiRISE stickers (thanks to our friends the HIRISE team) and Zooniverse stickers (thanks to the Zooniverse team) that are perfect for a laptop, tablet, suitcase, or any surface a Planet Four Mars Explorer wants to proudly display their love for Mars, HIRISE and the Zooniverse.

How does this work?  Getting registered for the draw is super easy, all you need to do is keep doing what you normally do.  Log in with your Zooniverse account and classify on the original Planet Four website  each week for the next four weeks. By classifying,  you’ll be entered in the weekly draw. You’ll be contacted using the email address we have on file with your Zooniverse account. Make sure to check that  your contact information is update in your Zooniverse  profile (go to http://www.zooniverse.org log in and  click on the top right icon by your username. On the drop down menu that will appear click on Settings. Then click on the Email tab on the Settings page)

Good luck and in the meantime if you have a spare moment or two, help celebrate the accomplishments of MRO and HiRISE today by reviewing the first year images of Ithaca today at http://www.planetfour.org

Highlights from ZooCon 2015

2015 721 Trip to Oxford Uni -  Physics Dept.

Grant Miller starting off ZooCon 2015 – Image credit: Pete Jalowiczor

Today we have a guest post from Andy Martin, one of  our dedicated Planet Four Talk moderators, who attended ZooCon 2015 in Oxford, UK on July 11th.  In a previous life as a chartered chemist, Andy tested the air at the House of Commons, assessed the quality of food, water and nuclear fuel testing, and worked on standards for breathalysers and dairy farm milking parlours. He now runs a campsite in Cornwall where there are lots more stars to stargaze at in the night sky than there were inside the M25. The photos accompanying the blog come from Planet Four volunteer Pete Jalowiczor. Pete has a background in Astrophysics; he was one of Prof. David Hughes’ Postgraduate students at the University of Sheffield, UK in the early ’90s researching Halley’s comet. He currently works in education assisting students in Further and Higher Education with learning difficulties.

And so to Oxford for Zoocon 2015, ably led by our master of ceremonies Grant Miller. The days events are available to view (the video of the talks can be found here) at so I’ll stick to a few highlights rather than provide minutes on the meeting.

2015 718 Trip to Oxford Uni -  Physics Dept.

Off to Oxford Astrophysics Image credit: Pete Jalowiczor

 First up Becky Smethurst gave an up date on Snapshot Supernova which ran earlier this year in association with the BBC and Stargazing Live.  The project had been a great success and have caught 5 supernovas in the act of going bang. Whilst the supernovas were the stuff of “proper big science” Becky was just as pleased with the results of the group photo experiment to image Orion  This saw images of Orion taken by the public combined to provide a stunning image of the constellation, which you can see here data.zooniverse.org/orion/all_stack_wide_step_number_1567 (NB I found this with some difficulty, the beeb websites just loop when you start looking)

Ali Swanson next, all about Snapshot Serengeti which, amongst the delegates at least, seems to be a bit of a Marmite group, but everyone seems to have had a go, love it or hate it. The project has produced a paper and all the data collected to date has been made freely available to all, that’s around 1.2 million photos.

Victoria Van Hyning gave an interesting presentation on the humanities led projects which mainly center on the transcription of historical documents. You may already be aware of the War Diaries and sea logs projects but did you know you could help to transcribe ancient documents written in Greek (no ability to actually understand Grek required) via the Ancient Lives project.  Another project that I wasn’t aware of, but will be on the lust when I get some time, is Science Gossip. This involves a variety of scientific documents like the lab books and journals of working scientists.

Alissa Bans and Disk Detectives are identifying stars with disks around them where planets may be forming; YSO’s or Young Stellar Objects.  So far around 700 disk candidates have been identified some around close to home stars such as Vega.

An update on Disk Detective. Image credit: Pete Jalowiczor

An update on Disk Detective. Image credit: Pete Jalowiczor

Tom Hart has a cool job in more ways than one, he looks after Penguin Watch which monitors penguin populations using both satellite imaging and trail cameras similar to those used for Snapshot Serengeti.  Because of the extreme weather conditions and remoteness of the locations the team are working on cameras which will be able to stay in the field for up to 10 years without being touched.  The project has already seen some success in getting fishing restrictions imposed to protect penguin populations.

2015 736 Trip to Oxford Uni -  Physics Dept.

Penguins! Image credit: Pete Jalowiczor

Zooniverse Past and Future ran over what’s been happening in the Zooniverse and what may yet come to pass.  There has been a paper published discussing ideas for citizen science in astronomy and the recent Earthquakes in Nepal saw the power of the Zooniverse used to identify areas where aid was needed but not being delivered, literally because the places affected were not on the map.

And finally back to Grant with what I think is the most exciting development for the Zooniverse yet.  The new platform enables anyone to set up and manage Zooniverse project of their very own. To show how easy this was Grant set up a project to identify attendees at ZooCon15 from photographs and measure the size of their smile. This he did in a couple of hours whilst the talks were going on.  To find out more log on to the Zooniverse and look for the Build a project’ button top right.All I need now is a huge pile of data to analyse.

2015 746 Trip to Oxford Uni -  Physics Dept.

Image credit: Pete Jalowiczor

And thence to the pub to renew aquantancies and make friends anew.  Sadly the mild ran out early on but those who dined found their meals accompanied by designer new potatoes, purple all the way through, which tasted……just like potatoes.

2015 732 Trip to Oxford Uni -  Physics Dept.

Planet Four representing at ZooCon 2015 Left to right: Andy Martin, Pete T, and Pete Jalowiczor (Thanks to Pete Jalowiczor for the photo)